skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tsai, Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Superfluid3He is a paradigm for odd-parity Cooper pairing, ranging from neutron stars to uranium-based superconducting compounds. Recently it has been shown that3He, imbibed in anisotropic silica aerogel with either positive or negative strain, preferentially selects either the chiral A-phase or the time-reversal-symmetric B-phase. This control over basic order parameter symmetry provides a useful model for understanding imperfect unconventional superconductors. For both phases, the orbital quantization axis is fixed by the direction of strain. Unexpectedly, at a specific temperatureTx, the orbital axis flops by 90, but in reverse order for A and B-phases. Aided by diffusion limited cluster aggregation simulations of anisotropic aerogel and small angle X-ray measurements, we are able to classify these aerogels as either “planar and “nematic concluding that the orbital-flop is caused by competition between short and long range structures in these aerogels. 
    more » « less
  2. Recent advances in quantum sensors, including atomic clocks, enable searches for a broad range of dark matter candidates. The question of the dark matter distribution in the Solar system critically affects the reach of dark matter direct detection experiments. Partly motivated by the NASA Deep Space Atomic Clock (DSAC), we show that space quantum sensors present new opportunities for ultralight dark matter searches, especially for dark matter states bound to the Sun. We show that space quantum sensors can probe unexplored parameter space of ultralight dark matter, covering theoretical relaxion targets motivated by naturalness and Higgs mixing. If an atomic clock were able to make measurements on the interior of the solar system, it could probe this highly sensitive region directly and set very strong constraints on the existence of such a bound-state halo in our solar system. We present sensitivity projections for space-based probes of ultralight dark matter which couples to electron, photon, and gluon fields, based on current and future atomic, molecular, and nuclear clocks. 
    more » « less
  3. The MicroBooNE experiment is an 85 tonne active mass liquid argon time projection chamber neutrino detector exposed to the on-axis Booster Neutrino Beam at Fermilab. One of MicroBooNE’s physics goals is the precise measurement of neutrino interactions on argon in the 1 GeV energy regime. Building on the capabilities of the MicroBooNE detector, this analysis identifies K + mesons, a key signature for the study of strange particle production in neutrino interactions. This measurement is furthermore valuable for background estimation for future nucleon decay searches and for improved reconstruction and particle identification capabilities in experiments such as the Deep Underground Neutrino Experiment. In this Letter, we present the first-ever measurement of a flux-integrated cross section for charged-current muon neutrino induced K + production on argon nuclei, determined to be 7.93 ± 3.22 ( stat ) ± 2.83 ( syst ) × 10 42 cm 2 / nucleon based on an analysis of 6.88 × 10 20 protons on target. This result was found to be consistent with model predictions from different neutrino event generators within the reported uncertainties. 
    more » « less
    Free, publicly-accessible full text available December 19, 2026
  4. Abstract The existence of three distinct neutrino flavours,νeμandντ, is a central tenet of the Standard Model of particle physics1,2. Quantum-mechanical interference can allow a neutrino of one initial flavour to be detected sometime later as a different flavour, a process called neutrino oscillation. Several anomalous observations inconsistent with this three-flavour picture have motivated the hypothesis that an additional neutrino state exists, which does not interact directly with matter, termed as ‘sterile’ neutrino,νs(refs. 3–9). This includes anomalous observations from the Liquid Scintillator Neutrino Detector (LSND)3experiment and Mini-Booster Neutrino Experiment (MiniBooNE)4,5, consistent withνμ → νetransitions at a distance inconsistent with the three-neutrino picture. Here we use data obtained from the MicroBooNE liquid-argon time projection chamber10in two accelerator neutrino beams to exclude the single light sterile neutrino interpretation of the LSND and MiniBooNE anomalies at the 95% confidence level (CL). Moreover, we rule out a notable portion of the parameter space that could explain the gallium anomaly6–8. This is one of the first measurements to use two accelerator neutrino beams to break a degeneracy betweenνeappearance and disappearance, which would otherwise weaken the sensitivity to the sterile neutrino hypothesis. We find no evidence for eitherνμ → νeflavour transitions orνedisappearance that would indicate non-standard flavour oscillations. Our results indicate that previous anomalous observations consistent withνμ → νetransitions cannot be explained by introducing a single sterile neutrino state. 
    more » « less
    Free, publicly-accessible full text available December 3, 2026
  5. We report results from an updated search for neutral current (NC) resonant Δ ( 1232 ) baryon production and subsequent Δ radiative decay (NC Δ N γ ). We consider events with and without final state protons; events with a proton can be compared with the kinematics of a Δ ( 1232 ) baryon decay, while events without a visible proton represent a more generic phase space. In order to maximize sensitivity to each topology, we simultaneously make use of two different reconstruction paradigms, Pandora and Wire-Cell, which have complementary strengths, and select mostly orthogonal sets of events. Considering an overall scaling of the NC Δ N γ rate as an explanation of the MiniBooNE anomaly, our data exclude this hypothesis at 94.4% CL. When we decouple the expected correlations between NC Δ N γ events with and without final state protons, our data exclude an interpretation in which all excess events have associated protons at 2.0 σ , and are consistent with an interpretation in which all excess events have no associated protons at  0.63 σ
    more » « less
    Free, publicly-accessible full text available November 17, 2026
  6. We report the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) on natural germanium, measured at the Spallation Neutron Source at Oak Ridge National Laboratory. The Ge-Mini detector of the COHERENT collaboration employs large-mass, low-noise, high-purity germanium spectrometers, enabling excellent energy resolution, and an analysis threshold of 1.5 keV electron-equivalent ionization energy. We observe an on-beam excess of 20.6 6.3 + 7.1 counts with a total exposure of 10.22 GWhkg, and we reject the no-CEvNS hypothesis with 3.9 σ significance. The result agrees with the predicted standard model of particle physics signal rate within 2 σ . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  7. Abstract Maximizing the discovery potential of increasingly precise neutrino experiments will require an improved theoretical understanding of neutrino-nucleus cross sections over a wide range of energies. Low-energy interactions are needed to reconstruct the energies of astrophysical neutrinos from supernovae bursts and search for new physics using increasingly precise measurement of coherent elastic neutrino scattering. Higher-energy interactions involve a variety of reaction mechanisms including quasi-elastic scattering, resonance production, and deep inelastic scattering that must all be included to reliably predict cross sections for energies relevant to DUNE and other accelerator neutrino experiments. Refined nuclear interaction models in these energy regimes will also be valuable for other applications, such as measurements of reactor, solar, and atmospheric neutrinos. This manuscript discusses the theoretical status, challenges, required resources, and path forward for achieving precise predictions of neutrino-nucleus scattering and emphasizes the need for a coordinated theoretical effort involved lattice QCD, nuclear effective theories, phenomenological models of the transition region, and event generators. 
    more » « less
  8. We report a new measurement of flux-integrated differential cross sections for charged-current (CC) muon neutrino interactions with argon nuclei that produce no final-state pions ( ν μ CC 0 π ). These interactions are of particular importance as a topologically defined signal dominated by quasielasticlike interactions. This measurement was performed with the MicroBooNE liquid argon time projection chamber detector located at the Fermilab Booster Neutrino Beam and uses an exposure of 1.3 × 10 21 protons on target collected between 2015 and 2020. The results are presented in terms of single- and double-differential cross sections as a function of the final-state muon momentum and angle. The data are compared with widely used neutrino event generators. We find good agreement with the single-differential measurements, while only a subset of generators are also able to adequately describe the data in double-differential distributions. This work facilitates comparison with Cherenkov detector measurements, including those located at the Booster Neutrino Beam. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  9. null (Ed.)
  10. Understanding electron neutrino interactions is crucial for measurements of neutrino oscillations and searches for new physics in neutrino experiments. We present the first measurement of the flux-averaged ν e + ν ¯ e charged-current single charged-pion production cross section on argon using the MicroBooNE detector and data from the NuMI neutrino beam. The total cross section is measured to be [ 0.93 ± 0.13 ( stat ) ± 0.27 ( syst ) ] × 10 39 cm 2 / nucleon at a mean ν e + ν ¯ e energy of 730 MeV. Differential cross sections are also reported in electron energy, electron and pion angles, and electron-pion opening angle. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026